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Abstract 

The port-Hamiltonian (pH) framework gives rise to math-
ematical models that preserve physical quantities, such 
as the energy, or maintain dissipation inequalities. Within 
multiphysics problems, submodels that appear as port-
Hamiltonian systems (pHS) with input/output quantities 
that are coupled linearly, for many applications with 
skew-symmetric matrices, result in global pH systems. In 
this contribution, the suitability of the pH framework is 
demonstrated for systems of equations that result from 
mimetic discretizations of electromagnetism, such as the 
finite-integration technique (FIT), for network formula-
tions, and for thermodynamic field formulations.   

1 Introduction 

Current electromagnetic and electronic devices often 
have geometric multiscale and temporal multirate char-
acteristics that result in complex and computationally in-
feasible full Maxwell models, in a practical setting. Such 
devices can often be decomposed into multiple and mul-
tiply coupled submodels, such as for instance, field-cir-
cuit and field-transmission line models. In addition, elec-
tromagnetic phenomena can result in substantial thermal 
and mechanical effects, and hence, a complete descrip-
tion requires a multi-physical approach.  

Port-Hamiltonian system formulations [1] that either ap-
pear in a continuous setting (as sets of partial differential 
equations) or in discrete variants (as pH differential-alge-
braic equations, pH-DAE), provide a framework for cou-
pled system formulations in multi-model and multi-phys-
ics problems. The resulting pHS formulations enable en-
ergy conservation and dissipation inequalities. Whenever 
these properties are satisfied in the pHS subsystems in 
coupled formulations and the input/output variables are 
linearly related, also the coupled system is pHS [2]. For 
instance, with 𝑖𝑖 = 1,2, … ,𝑛𝑛, autonomous pH-DAEs of the 
form 

(1a) 𝐄𝐄𝑖𝑖
d𝐱𝐱𝑖𝑖
dt

= (𝐉𝐉𝑖𝑖 − 𝐑𝐑𝑖𝑖)𝑧𝑧𝑖𝑖(𝐱𝐱𝑖𝑖) + 𝐁𝐁�𝑖𝑖𝐮𝐮�𝑖𝑖,int(𝑡𝑡) + 𝐁𝐁�𝑖𝑖𝐮𝐮�𝑖𝑖(𝑡𝑡) 

(1b) 𝐲𝐲�𝑖𝑖(𝑡𝑡) = 𝐁𝐁�𝑖𝑖⊤𝑧𝑧𝑖𝑖(𝐱𝐱𝑖𝑖), 𝐲𝐲�𝑖𝑖(𝑡𝑡) = 𝐁𝐁�𝑖𝑖⊤𝑧𝑧𝑖𝑖(𝐱𝐱𝑖𝑖), 

with possibly nonlinear mappings 𝑧𝑧𝑖𝑖, skew symmetric ma-
trices 𝐉𝐉𝑖𝑖 = −𝐉𝐉𝑖𝑖⊤, symmetric and semi-positive definite dis-
sipation matrices 𝐑𝐑𝑖𝑖 ≥ 0. The linear input/output relations 
(1b) split up into internal (hat) and external (bar) quanti-
ties and a linear coupling relation 𝐮𝐮� + 𝐊𝐊𝐲𝐲� = 𝟎𝟎 of the inter-
nal quantities, with a skew-symmetric matrix 𝐊𝐊 = −𝐊𝐊⊤, as 
is often the case in applications. These latter systems can 
again be combined into a pH-DAE system 

(2a) 𝐄𝐄 d𝐱𝐱
dt

= (𝐉𝐉̅ − 𝐑𝐑)𝑧𝑧(𝐱𝐱) + 𝐁𝐁�𝐮𝐮�(𝑡𝑡), 

(2b) 𝐲𝐲�(𝑡𝑡) = 𝐁𝐁�⊤𝑧𝑧(𝐱𝐱), 

with a skew-symmetric matrix 𝐉𝐉̅ = 𝐉𝐉 − 𝐁𝐁𝐊𝐊𝐁𝐁⊤ [4]. Various 
pHS formulations have been studied for individual and for 
coupled problems. For instance, pHS formulations for 
Maxwell equations are analyzed in [4], electric circuit 
problems in [1,4,5], coupled discrete field-circuit formula-
tions in [3,6], both using the network-type equations of 
the finite integration technique [7]. Coupled circuit-trans-
mission line pHS formulations are presented in [8,9].  

2 Maxwell Grid Equations in pH-DAE form 

The structure of the Maxwell equations already corre-
sponds to a pHS formulation, which is mimicked within a 
pH-DAE for the discrete Maxwell grid equations of the 
Finite integration technique, 

(3) �
𝐌𝐌𝜀𝜀 𝟎𝟎
𝟎𝟎 𝐌𝐌𝜇𝜇

� d
dt
�𝐞𝐞𝐡𝐡� = �� 𝟎𝟎 𝐂𝐂�

−𝐂𝐂 𝟎𝟎
��������
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𝟎𝟎 𝟎𝟎������
𝐑𝐑

� �𝐞𝐞𝐡𝐡� 

+ �−𝟏𝟏𝟎𝟎 ��
𝐁𝐁

𝐣𝐣𝑠𝑠(𝑡𝑡), 𝐲𝐲(𝑡𝑡) = 𝐁𝐁⊤ �𝐞𝐞𝐡𝐡�, 

where 𝐞𝐞(𝑡𝑡) and 𝐡𝐡(𝑡𝑡) are the (spatial) degrees of freedom  
(dof) vectors of electro- and magnetomotive forces as-
signed to the edges of the primal-dual grid complex, and 
𝐌𝐌𝜀𝜀, 𝐌𝐌𝜇𝜇, 𝐌𝐌𝜅𝜅 are diagonal approximations of the associ-
ated Hodge star permittivity, permeability, and electrical 
conductivity operators, respectively. Since 𝐌𝐌𝜅𝜅 ≥ 0, the 
corresponding matrix 𝐑𝐑 is diagonal and semi-positive def-
inite. The duality property 𝐂𝐂⊤ = 𝐂𝐂� of the two discrete pri-
mal and dual grid curl operators, implies the skew-sym-
metry of 𝐉𝐉 = −𝐉𝐉⊤, and hence, (3) is a pH-DAE system with 
the corresponding stability and passivity results, already 
shown in [7] using an alternative argumentation. As the 



matrix 𝐄𝐄 may also be singular, formulation (3) also in-
cludes a discrete magneto-quasistatic pH-DAE formula-
tion with −�̇�𝐚 = −𝐝𝐝𝐚𝐚/d𝑡𝑡 = 𝐞𝐞, so that 

(4) �
𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐌𝐌𝜇𝜇

� d
dt
�−�̇�𝐚𝐡𝐡� = �� 𝟎𝟎 𝐂𝐂�

−𝐂𝐂 𝟎𝟎
� − �𝐌𝐌𝜅𝜅 𝟎𝟎

𝟎𝟎 𝟎𝟎�� �
−�̇�𝐚
𝐡𝐡� 

+ �−𝟏𝟏𝟎𝟎 � 𝐣𝐣𝑠𝑠(𝑡𝑡), 𝐲𝐲(𝑡𝑡) = 𝐁𝐁⊤ �−�̇�𝐚𝐡𝐡�. 

In the discrete electro-quasistatic pH-DAE reformulation 
of (3), the vector of magnetic grid voltages can be re-
placed by an electric vector potential 𝐭𝐭(𝑡𝑡) = 𝐡𝐡, and yields 

(5) �𝐌𝐌𝜀𝜀 𝟎𝟎
𝟎𝟎 𝟎𝟎�

d
dt
�𝐞𝐞𝐭𝐭� = �� 𝟎𝟎 𝐂𝐂�

−𝐂𝐂 𝟎𝟎
� − �𝐌𝐌𝜅𝜅 𝟎𝟎

𝟎𝟎 𝟎𝟎�� �
𝐞𝐞
𝐭𝐭� 

+ �−𝟏𝟏𝟎𝟎 � 𝐣𝐣𝑠𝑠(𝑡𝑡), 𝐲𝐲(𝑡𝑡) = 𝐁𝐁⊤ �−�̇�𝐚𝐡𝐡�. 

Applying e.g. an implicit Euler time-integration and a 
Schur complement, and with 𝐌𝐌 = [(Δ𝑡𝑡)−1𝐌𝐌𝜀𝜀 + 𝐌𝐌𝜅𝜅]−1, the 
pH-DAE system (5) yields a so far unpublished electro-
quasistatic curl-curl formulation time stepping scheme, 

(6) 𝐞𝐞𝑛𝑛+1 = 𝐌𝐌�𝐈𝐈 − 𝐂𝐂�[𝐂𝐂𝐌𝐌𝐂𝐂�]−#𝐂𝐂𝐌𝐌� � 1
Δ𝑡𝑡
𝐌𝐌𝜀𝜀𝐞𝐞𝑛𝑛 − 𝐣𝐣𝑠𝑠𝑛𝑛+1�.   

2 Electric Circuit pH-DAE Formulation 

For electric circuits, pH-DAE formulations [5] are estab-
lished. A first pH-DAE field-circuit formulation is derived 
in [6], assuming ports on the terminals of circuits. An al-
ternative coupled field-circuit pH-DAE formulation based 
on modified nodal analysis was recently presented in [4].  

3 Transmission Line pH-DAE Formulation 

For multiconductor transmission line formulations used 
for modelling transversal electromagnetic wave propaga-
tion along electric cable harnesses, pHS formulations are 
analyzed in [8,9]. A discrete transmission line model with 
the dof vector [𝐮𝐮, 𝐢𝐢]𝑇𝑇(𝑡𝑡) of voltages and currents reads as 

(7) �𝐌𝐌𝐶𝐶 𝟎𝟎
𝟎𝟎 𝐌𝐌𝐿𝐿

� d
dt
�𝐮𝐮𝐢𝐢 � = ��𝟎𝟎 𝐏𝐏

𝐏𝐏� 𝟎𝟎� − �𝐌𝐌𝐺𝐺 𝟎𝟎
𝟎𝟎 𝐌𝐌𝑅𝑅

�� �𝐮𝐮𝐢𝐢 � 

+ �−𝐈𝐈 𝟎𝟎
𝟎𝟎 −𝐈𝐈� �

𝐢𝐢Rhs
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� (𝑡𝑡), 𝐲𝐲(𝑡𝑡) = �−𝐈𝐈 𝟎𝟎
𝟎𝟎 −𝐈𝐈�

⊤
� 𝐢𝐢𝐮𝐮�

(𝑡𝑡), 

with symmetric positive (semi-)definite matrices 𝐌𝐌𝐶𝐶, 𝐌𝐌𝐿𝐿, 
𝐌𝐌𝑅𝑅, 𝐌𝐌𝐺𝐺  corresponding to transmission line parameters.  
The pH-DAE formulation (7) relies on the duality relation 
of the one-dimensional difference operators 𝐏𝐏� = −𝐏𝐏T. 
Electromagnetic field-transmission line pH-DAE formula-
tions for the description of scattering and radiation from 
electric transmission lines require the definition of port 
structures along the transmission line geometries. 

4 Thermal pH-DAE Formulation 

A FIT discretization of the heat equation [10] yields the 
ordinary differential equations (ODE) system 

(8) 𝐌𝐌𝑐𝑐𝑐𝑐
d
d𝑡𝑡
𝐓𝐓 = −𝐒𝐒�𝐣𝐣𝑤𝑤 + 𝐪𝐪𝑤𝑤(𝑡𝑡),   𝐣𝐣𝑤𝑤 = −𝐌𝐌𝜆𝜆𝐆𝐆𝐓𝐓,             

and 𝐟𝐟𝑤𝑤 = 𝐌𝐌𝜆𝜆
−1𝐣𝐣𝑤𝑤, where 𝐓𝐓(𝑡𝑡) is the dof vector of the pri-

mal grid node temperatures, 𝐌𝐌𝑐𝑐𝑐𝑐 and 𝐌𝐌𝜆𝜆 are the sym-
metric, positive definite matrices of density and thermal 
capacity products and thermal conductivities, respec-
tively, 𝐣𝐣𝑤𝑤 is the vector of dual facet heat currents, 𝐆𝐆 is a 
discrete primal grid gradient matrix, 𝐒𝐒� is the discrete dual 
grid divergence operator, and 𝐪𝐪𝑤𝑤(𝑡𝑡) is the source vector 
of ohmic dual cell losses. With the primal-dual grid rela-
tion 𝐒𝐒� = −𝐆𝐆 [7], ODE system (7) can be reformulated into 
the pH-DAE system (2) with the dof vector 𝐱𝐱 = [𝐓𝐓; 𝐟𝐟𝑤𝑤] and 

(9)     𝐄𝐄 = �𝐌𝐌𝑐𝑐𝑐𝑐 𝟎𝟎
𝟎𝟎 𝟎𝟎

� , 𝐉𝐉 = � 𝟎𝟎 𝐆𝐆⊤𝐌𝐌𝜆𝜆
−𝐌𝐌𝜆𝜆𝐆𝐆 𝟎𝟎 � ,𝐑𝐑 = �𝟎𝟎 𝟎𝟎

𝟎𝟎 𝐌𝐌𝜆𝜆
� 

and 𝐁𝐁 as before. Note that a coupled electro-thermal pH-
DAE formulation needs to consider thermal volume 
losses within the source vector 𝐪𝐪𝑤𝑤(𝑡𝑡). 

The full paper will give details on the coupled pH-DAE 
systems formulations.  
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